

Fig. 1. A stereoscopic view of the $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ unit cell.
Table 3. Hydrogen-bonding distances (\AA) and angles $\left(^{\circ}\right)$

A	B	C	$d(A-C)$	$d(A-B)$
$d(B \cdots C)$	$\angle(A-B \cdots C)$			
$W(1)-\mathrm{H}(1) \cdots W\left(2^{\text {ii }}\right)$	$2.872(3)$	$0.958(4)$	$1.941(4)$	$163.6(3)$
$W(1)-\mathrm{H}(2) \cdots \mathrm{O}\left(^{\text {(ii) }}\right.$	$2.726(3)$	$0.967(4)$	$1.759(3)$	$178.3(4)$
$W(2)-\mathrm{H}(3) \cdots \mathrm{O}$	$2.687(3)$	$0.989(3)$	$1.701(3)$	$173.8(3)$
$\left.W(2)-\mathrm{H}(4) \cdots \mathrm{O}{ }^{\text {(iv }}\right)$	$2.701(3)$	$0.980(3)$	$1.731(3)$	$169.4(3)$
$\mathrm{H}(1)-W(1)-\mathrm{H}(2)$	$1.551(4)$	-	-	$107.4(3)$
$\mathrm{H}(3)-W(2)-\mathrm{H}(4)$	$1.553(4)$	-	-	$104.1(3)$

Symmetry codes: (ii) $x-1, y, z$; (iii) $x, y-1, z$; (iv) $y, z, x-1$.
molecule is distorted from this favorable orientation owing to the strong hydrogen bonds between $W(2)$ and the SO_{3}^{2-} ion. The SO_{3}^{2-} ion takes part in nine of the twelve hydrogen bonds in the cell, each sulfite oxygen being bonded in the oxygen plane through $W(1)-$ $\mathrm{H}(2) \cdots \mathrm{O}$ and $W(2)-\mathrm{H}(4) \cdots \mathrm{O}$ and perpendicular to it through $W(2)-\mathrm{H}(3) \cdots \mathrm{O}$ (cf. Fig. 1). The other three hydrogen bonds are between water molecules in different $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ units.

The authors wish to thank Dr Jaques Moret for providing the crystals.

References

Andersen, L., Lindqvist, O. \& Moret, J. (1984). Acta Cryst. C40, 586-589.
Andersen, L., Lindqvist, O., Strömberg, A. \& Strömberg, D. (1984). In preparation.

Baggio, S. \& Becka, L. N. (1969). Acta Cryst. B25, $1150-1155$.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Flack, H. (1973). Acta Cryst. B29, 656-658.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-6 10.
International Tables for X-ray Crystallography' (1974). Vol. IV. Birmingham: Kynoch Press.
Johansson, L.-G. \& Lindqvist, O. (1979). Acta Cryst. B35, 1017-1020.
Kierkegaard, P., Larsson, L. O. \& Nyberg, B. (1972). Acta Chem. Scand. 26, 218-224.
Larsson, L.-O. \& Kierkegaird, P. (1969). Acta Chem. Scand. 23, 2253-2260.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
LindQvist, O. \& Ljungström, E. (1979). J. Appl. Cryst. 12, 134.
LindQvist, O. \& Wengelin, F. (1967). Ark. Kemi, 28, 179-187.
Magnusson, A., Johansson, L.-G. \& LindQqist, O. (1981). Acia Cryst. B37, 1108-1110.
Stedman, R.. Almqvist, L., Raunio, G. \& Nilsson, G. (1969). Rer. Sci. Instrum. 40, 249-255.
Strömberg, A., Gropen, O., Wahlgren, U. \& Lindqvist, O. (1983). Inorg. Chem. 22, 1129-1133.

Syntex (1973). XTL Structure Determination Sistem. Syntex Analytical Instruments, Cupertino, California.
Weiss, R., Wendling, J.-P. \& Grandjean, O. (1966). Acta Cryst. 20. 563-566.

The Structures of Magnesium Tellurate(IV) Hexahydrate, $\mathrm{MgTeO}_{3} \cdot \mathbf{6 \mathrm { H } _ { 2 }} \mathbf{O}$, and Magnesium Selenate(IV) Hexahydrate, $\mathbf{M g S e O}_{\mathbf{3}} \mathbf{6} \mathbf{6} \mathbf{2} \mathbf{O}$

By Leif Andersen and Oliver Lindqvist
Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, S-412 96 Göteborg, Sweden

and Jacques Moret

Laboratoire de Chimie Minérale C, Université des Sciences et Techniques du Languedoc, Place E. Bataillon, F-340 60 Montpellier, France
(Received 4 October 1983; accepted 15 December 1983)

0108-2701/84/040586-04\$01.50
$2.08(1) \mathrm{g} \mathrm{cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=37.4$, $49.8 \mathrm{~cm}^{-1}, F(000)=148,130, T=293 \mathrm{~K}, 819,695$ diffractometer reflections, $R=0.029,0.021$. The structures are isomorphous with $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The dimen-
© 1984 International Union of Crystallography
sions of the TeO_{3-}^{2-} and SeO_{3}^{2-} ions are $\mathrm{Te}-\mathrm{O}=$ 1.859 (4),, $\mathrm{Se}-\mathrm{O}=1.697$ (3) \AA and $\angle \mathrm{O}-\mathrm{Te}-\mathrm{O}=$ $98.6(1), \mathrm{O}-\mathrm{Se}-\mathrm{O}=101.4(1)^{\circ}$.

Introduction. In order to evaluate the electronic structure of the SO_{3}^{2-} and TeO_{3}^{2-} ions, SCF HartreeFock calculations have been started on these systems (Strömberg, Gropen, Wahlgren \& Lindqvist, 1983). Successful geometry optimizations have been performed for SO_{3}^{2-} and HSO_{3}^{-}using the structures of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (Larsson \& Kierkegaard, 1969) and CsHSO_{3} (Johansson, Lindquist \& Vannerberg, 1980) for crystal potential-field calculations.

A structure suitable as an experimental basis for geometry optimizations of TeO_{3}^{2-} should contain this ion on a threefold axis of symmetry. A recent compilation of tellurate(IV) structures (Daniel, Moret, Maurin \& Philippot, 1982; Philippot, 1981) shows that only a few of the known structures contain free TeO_{3}^{2-} ions e.g. $\mathrm{Na}_{2} \mathrm{TeO}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ (Philippot, Maurin \& Moret, 1979), $\mathrm{K}_{2} \mathrm{TeO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Johansson \& Lindqvist, 1978), $\mathrm{BaTeO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Rottersten-Nielsen, Grönbaek-Hazell \& Rasmussen, 1971) and $\mathrm{Li}_{2} \mathrm{TeO}_{3} \cdot \mathrm{LiOH}$ (CachauHerreillat, Norbert, Maurin, Fourcade \& Philippot, 1983). However, none of these structures contain TeO_{3}^{2-} ions with threefold symmetry.
The powder diagram of $\mathrm{MgTeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ has been reported by Samplavskaya, Ivankova \& Karapet'yahts (1966), without reference to space group or cell dimensions. A comparison of their data and the powder patterns of $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ indicates that the three compounds are isomorphous. If so, this would constitute the first case in which isomorphism between sulfite and tellurate(IV) compounds has been demonstrated.
$\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Flack, 1973) and $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Weiss, Wendling \& Grandjean, 1966) have been determined previously from X-ray data in space group $R 3$ with S and Se on the threefold axis. A neutron diffraction refinement of $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Andersen \& Lindqvist, 1984) has given the details of the hydrogenbond structure in this compound.

In the present work, the crystal structure of $\mathrm{MgTeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ has been determined to confirm the probable isomorphism in the series $\mathrm{Mg} X_{\mathrm{O}_{3}} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $X=\mathrm{S}$, Se and Te . In addition, a refinement of the structure of $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ has been performed, since the previous work is of relatively low precision $[\sigma(\mathrm{Se}-\mathrm{O}) \simeq 0.1 \AA]$.

Experimental. Crystals of $\mathrm{MgTeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ obtained from aqueous solutions of $\mathrm{K}_{2} \mathrm{TeO}_{3}, \mathrm{~K}_{2} \mathrm{SeO}_{3}$ saturated with $\mathrm{Mg}(\mathrm{OH})_{2}$, colorless octahedra of corner-to-corner dimensions 0.05, 0.09 mm mounted on a Syntex $P 2_{1}$ diffractometer, graphite-monochromatized Mo $K \alpha$ radiation, lattice
parameters refined from setting angles of 11,15 reflections in the interval $7<2 \theta<23^{\circ}$; 925 ($2 \theta<$ $\left.80^{\circ} ; h \geq k,-7 \leq h \leq 7,-7 \leq k \leq 7,-10 \leq l \leq 10\right)$, $703 \quad\left(2 \theta<60^{\circ} ; \quad h \geq k, \quad-5 \leq h \leq 8, \quad-8 \leq k \leq 5\right.$, $0 \leq l \leq 8$) reflections* measured in scan interval $2.0 \leq 2 \theta \leq 3.0^{\circ}$, and evaluated by profile analysis according to Lehmann \& Larsen (1974) (program LELA; Lindqvist \& Ljungström, 1979) giving 819,695 (295, 264 unique) intensities with $I>3 \sigma(I)$; standard reflections in both cases 133, 022, stable, Lp corrections ($X T L$, Syntex, 1973), no absorption corrections; structures verified from Patterson and Fourier maps ($X T L$; Syntex, 1973), H not located for $\mathrm{MgTeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, H located from difference maps for $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, full-matrix least-squares refinements of 819,695 nonaveraged reflections (Busing, Martin \& Levy, 1962; Coppens \& Hamilton, 1970), anisotropic temperature factors for non-H atoms, minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, \quad w R=0.032, \quad 0.025, \quad S=0.27$, $0.32, w=\left[\sigma^{2}\left(F_{o}\right)+0.0025 F_{o}{ }^{2}\right]^{-1}, \sigma^{-2}\left(F_{o}\right)(\sigma$ based on counting statistics) giving satisfactory weight analyses, $\Delta / \sigma<0.5 \%$, scattering factors and anomalous-dispersion factors from International Tables for X-ray Crystallography (1974).

Discussion. Atomic coordinates, equivalent isotropic temperature factors and cell dimensions are given in Table 1 for $\mathrm{MgTeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, along with the values found for $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Andersen \& Lindqvist, 1984). Coordination distances and angles are given in Table 2.

The isomorphism between the three structures is evident, thus constituting the first example of isomorphous sulfite and tellurate(IV) compounds. The reasons that such isomorphism does not generally occur are the differences in chemistry, mainly the great tendency of TeO_{3}^{2-} to be stabilized in condensed chain or network structures. In the present case, the TeO_{3}^{2-} ion is shielded from polarization and condensation by the large $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ ions.

The present set of bond distances and angles for the $\mathrm{SO}_{3}^{2-}, \mathrm{SeO}_{3}^{2-}$ and TeO_{3}^{2-} ions (Table 2) may be regarded as reference values, since there are no strong ionic or covalent interactions between the anions and other units in the structure. They are in rather good agreement with the previous reference values published by Wells (1975), who compiled earlier structural works.

A comparison of $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with other sulfites was performed in the previous paper (Andersen \& Lindqvist, 1984). Concerning selenites, there are not many structures known containing free SeO_{3}^{2-} ions, but the previously published values for $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

[^0]Table 1. Comparison of fractional coordinates, equivalent isotropic temperature factors (Hamilton, 1959) and unit-cell dimensions for $\mathrm{I} \quad \mathrm{MgTeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, II $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and III $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Andersen \& Lindquist, 1984)

W denotes a water-molecule oxygen atom.					
Mg		x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
	I	$0 \cdot 0000$ (2)	2) $0.0000(2)$) $0.0000(2)$	$1 \cdot 30$ (1)
	II*	0	0	0	$1 \cdot 26$ (1)
	III*	0	0	0	1.49 (1)
Te	I*	0.5305	0.5305	0.5305	1.67 (1)
Se	II	0.5218 (2)	(2) 0.5218 (2)) 0.5218 (2)	1.55 (1)
S	III	0.5021 (6)	(6) 0.5021 (6)) 0.5021 (6)	$2 \cdot 18$ (2)
0	I	0.5741 (5)	(5) 0.4886 (5)) 0.2282 (6)	1.95 (5)
	II	0.5728 (4)	(4) 0.4893 (4)) 0.2469 (4)	1.89 (4)
	III	0.5598 (3)	3) 0.4826 (3)) 0.2565 (3)	$2 \cdot 12$ (2)
$W(1)$	I	-0.3232 (5)	(5) -0.1273 (6)	0.056I (6)	$2 \cdot 25$ (6)
	II	-0.3195 (5)	(5) $-0 \cdot 1275$ (6)) 0.0641 (6)	$2 \cdot 21$ (5)
	III	-0.3165 (3)	3) $-0 \cdot \mathrm{I} 254$ (3)	0.0765 (4)	2.45 (3)
$W(2)$	I	0.3279 (5)	(5) 0.1385 (5)) -0.0443 (5)	1.79 (5)
	II	0.3299 (5)	(5) 0.1424 (6)) -0.0440 (5)	1.74 (4)
	III	$0 \cdot 3288$ (3)	3) $0.1464(3)$) -0.0496 (3)	1.98 (2)
Cell dimensions:			$a(\AA)$	$\alpha\left({ }^{\circ}\right)$	$V\left(\dot{\AA}^{3}\right)$
		6.0	6.011(2) $\quad 97$	97.36 (3)	211.3(1)
		II 5.96	5.965 (2) 97.	97.28 (2)	206.7 (1)
		III 5.93	5.933 (2) 9	96.28 (2)	204.8(2)

* Fixed to define origin.

Table 2. Coordination distances (\AA) and angles $\left({ }^{\circ}\right)$ in

$\mathrm{Mg} \mathrm{OO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, X=\mathrm{Te}, \mathrm{Se}$ and S			
	Te	Se	S*
$\mathrm{Mg}-W(1)$	2.080 (3)	2.061 (3)	2.059 (2)
$\mathrm{Mg}-W(2)$	$2 \cdot 102$ (3)	$2 \cdot 104$ (3)	$2 \cdot 112$ (2)
$X-\mathrm{O}$	1.859 (4)	1.697 (3)	1.528 (2)
O...0	$2 \cdot 818$ (4)	$2 \cdot 625$ (4)	2.413 (3)
$W(1)-\mathrm{Mg}-W\left(1^{\mathrm{I}}\right) \dagger$	91.0 (2)	92.4 (1)	$93 \cdot 8(1)$
$W(1)-\mathrm{Mg}-W(2)$	177.6 (2)	176.3 (1)	174.9 (1)
$W(2)-\mathrm{Mg}-W\left(2^{\text {i }}\right.$)	87.6 (1)	87.1 (1)	$86 \cdot 6$ (1)
$\mathrm{O}-X-\mathrm{O}$	98.6 (1)	101.4 (1)	104.3 (2)
* Andersen \& Lindquist (1984). \dagger Symmetry code: (i) z, x, v.			

(Weiss, Wendling \& Grandjean, 1966; cf. also Wells, 1975) agree well with the present results.

Philippot (1981) has reviewed the literature with respect to accurate tellurate(IV) structures, and refined the three-coordinated $\mathrm{Te}-\mathrm{O}$ distance $\left(R_{o}\right)$ to $1.854 \AA$, according to Brown's (1974) valence-bond formula $S=S_{o}\left(R / R_{o}\right)^{-v}$. Trömel (1980) has developed the valence-bond theory further. His considerations, which refer to a free TeO_{3}^{2-} ion without any backbonding to $\mathrm{Te}^{\mathrm{IV}}$, gave a value of $1.815 \AA$, significantly shorter than the present experimental value.

The hydrogen-bond structure determined for $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is in agreement with that found from neutron diffraction data for $\mathrm{MgSO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Andersen \& Lindqvist, 1984), except for some minor differences probably due to the different dimensions of the XO_{3}^{2-} ions (cf. Table 3). There is, however, an unbroken tendency indicating slightly stronger hydrogen bonding

Table 3. Hydrogen coordinates and hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for $\mathrm{MgSeO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and a comparison of $\mathrm{O} \cdots \mathrm{O}$ hydrogen-bond distances in $\mathrm{Mg}_{\mathrm{XO}}^{3} \cdot \mathrm{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $X=\mathrm{Te}, \mathrm{Se}$ and S

Table 4. Distances (\AA) along the threefold axis in $\mathrm{Mg} X \mathrm{O}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, X=\mathrm{Te}, \mathrm{Se}$ and S

Distance		Te	Se	S*
$\begin{gathered} \text { X } \\ \text { OOO } \\ \text { Mg } \end{gathered}$	Mg $\cdots X$	4.763 (4)	$4 \cdot 658$ (3)	4.561 (3)
Mg				
$\begin{gathered} \dot{X} \\ \text { OOO } \end{gathered}$	$\mathrm{Mg} \cdots{ }^{\dagger} \dagger$	$4 \cdot 216$ (2)	$4 \cdot 269$ (2)	$4 \cdot 522$ (3)
$\begin{gathered} \mathrm{Mg} \\ \vdots \\ \mathrm{Mg} \end{gathered}$	$\mathrm{Mg} \cdots \mathrm{Mg}^{\text {i }}$	8.979 (5)	8.927 (5)	$9 \cdot 083$ (5)
		Andersen Symmetry	vist (1984) $\text { i) } x+1, y+$	

in the order $\mathrm{S}<\mathrm{Se}<\mathrm{Te}$. This tendency is significant from S to Te and especially for the strongest hydrogen bond $W(2)-\mathrm{O}^{1 v}$ through all three structures. This effect, as well as the increasing 'back-side' distances, 3.49 (5), 3.57 (4) and 3.69 (5) \AA for $\mathrm{Te} \cdots \mathrm{O}, \mathrm{Se} \cdots \mathrm{O}$ and $\mathrm{S} \cdots \mathrm{O}$, respectively, leads to the conclusion that the stercochemical activity of the lone pair is decreasing in the order $\mathrm{S}^{1 \mathrm{~V}}>\mathrm{Se}^{1 \mathrm{~V}}>\mathrm{Te}^{\text {IV }}$ in the X_{3}^{2-} ions. Accordingly, the electronegativity of the oxygen atoms increases in the order $\mathrm{S}<\mathrm{Se}<\mathrm{Te}$, also in agreement with the $\mathrm{O} \cdots \mathrm{O}$ distances within the XO_{3}^{2-} ions (cf. Table 2).

Table 4 shows the distribution of atoms along the threefold symmetry axis, and displays the most significant differences between the three isomorphous structures. There is obviously 'more space', i.e. higher stereochemical activity, accompanying the $3 s^{2}$ freeelectron pair of $\mathrm{S}^{1 v}$ than for the $4 s^{2}$ and $5 s^{2}$ pairs on
$\mathrm{Se}^{\mathrm{IV}}$ and $\mathrm{Te}^{\mathrm{IV}}$, respectively. However, the rather large difference also includes the evident geometrical factor that the smaller covalent radius of \mathbf{S}^{Iv} results in a larger $\mathrm{O}-X-\mathrm{O}$ bond angle (cf. Table 2).

References

Andersen, L. \& Lindqvist, O. (1984). Acta Cryst. C40, 584-586. Brown, I. D. (1974). J. Solid State Chem. 11, 214-223.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). OrflS. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cachau-Herreillat, D., Norbert, A., Maurin, M., Fourcade, R. \& Philippot, E. (1983). Rev. Chim. Minér. 20, 129-139.

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A 26, 71-83.
Daniel, F., Moret, J., Maurin, M. \& Philippot, E. (1982). Acta Cryst. B38, 703-706.
Flack, H. (1973). Acta Cryst. B29, 656-658.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johansson, G. B. \& Lindqvist, O. (1978). Acta Cryst. B34, 2959-2962.
Johansson, G. B., Lindqvist, O. \& Vannerberg, N.-G. (1980). Acta Cryst. B36, 2523-2526.
Larsson, L.-O. \& Kierkegaard, P. (1969). Acta Chem. Scand. 23, 2253-2260.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Lindqvist, O. \& Luungström, E. (1979). J. Appl. Cryst. 12, 134.
Philippot, E. (1981). J. Solid State Chem. 38, 26-33.
Philippot, E., Maurin, M. \& Moret, J. (1979). Acta Cryst. B35, 1337-1340.
Rottersten-Nielsen, B., Grönbaek-Hazell, R. \& Rasmussen, S. E. (1971). Acta Chem. Scand. 25, 3037-3042.
Samplavskaya, K. K., Ivankova, E. A. \& Karapet'yahts, M. K. (1966). Neorg. Mater. 2, 133-136.

Strömberg, A., Gropen, O., Wahlgren, U. \& Lindqvist, O. (1983). Inorg. Chem. 22, 1129-1133.

Trömel, M. (1980). J. Solid State Chem. 35, 90-98.
Weiss, R., Wendling, J.-P. \& Grandjean, D. (1966). Acta Cryst. 20, 563-567.
Wells, A. F. (1975). Structural Inorganic Chemistry, p. 585. Oxford: Clarendon Press.
Syntex (1973). XTL Structure Determination System. Syntex Analytical Instruments, Cupertino, California.

[^0]: * Lists of structure factors and anisotropic temperature factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39129 (13 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

